Preliminary communication

Mehrfachbindungen zwischen Hauptgruppenelementen und Übergangsmetallen *

XLIX *. Reduktive Enthalogenierung von Organorhenium(V)-Komplexen als geradliniger Syntheseweg zu niedervalenten Rhenium-Derivaten

Wolfgang A. Herrmann*, Roland A. Fischer und Eberhardt Herdtweck

Anorganisch-chemisches Institut der Technischen Universität München, Lichtenbergstrasse 4, D-8046 Garching (Deutschland)

(Eingegangen den 21. April 1987)

Abstract

The organorhenium(V) complex $(\eta^5 - C_5 Me_5) ReCl_4$ (1; Me = CH₃) undergoes stepwise dechlorination upon treatment with HgCl₂-activated aluminum powder, thus forming the isolable Re^{IV} and Re^{III} dimers $[(\eta^5-C_5Me_5)ReCl_3]_2$ (2) and $[(\eta^5-C_5Me_5)ReCl_2]_2$ (3), respectively. These reductions are reversible when 3 and 2 react with chlorine. The short metal-metal distance of the diamagnetic compound 3 (250.6(<1) pm) is indicative of a double bond (X-ray diffraction study of 3-Et) which is disrupted upon reaction with trimethylphosphane to yield the mononuclear complex $(\eta^5 - C_5 Me_5) ReCl_2(PMe_3)_2$ (8). Reduction of 1 (Al/HgCl₂) in the presence of hexyne(3) gives the d^4 -Re^{III} derivative (η^5 -C₅Me₅)ReCl₂(EtC=CEt) (4) that, according to an X-ray diffraction study and ¹³C NMR spectroscopy, contains a four-electron alkyne ligand tightly bonded to the rhenium atom (d(Re-C))196.1(3)/196.9(3) pm) and exhibiting a strong trans influence at the π -bonded ring ligand. Stepwise alkylation of 4 using methylmagnesium chloride gives the methyl complexes of composition $(\eta^5 - C_5 Me_5) Re(CH_3) Cl(\eta^2 - EtC = CEt)$ (5) and $(\eta^5 - C_5 Me_5) Re(CH_3) Cl(\eta^2 - EtC = CEt)$ C_5Me_5 Re(CH₄)₂(η^2 -EtC=CEt) (6) while hydrolysis of 4 yields the oxo-derivative $(\eta^5-C_5Me_5)ReO(\eta^2-EtC\equiv CEt)$ (7).

Die Organorhenium-Chemie hat mit dem Oxid $(\eta^5-C_5Me_5)ReO_3$ eine wertvolle Startverbindung erhalten [2]. Als weitere Schlüsselsubstanz in dieser Komplexserie

0022-328X/87/\$03.50 © 1987 Elsevier Sequoia S.A.

^{*} XLVIII. Mitteilung vgl. Ref. 1.

Schema 1.

stellen wir jetzt den Chloro-Komplex $(\eta^5-C_5Me_5)ReCl_4$ (1) vor, welcher sich stufenweise zu zweikernigen Re^{IV}- und Re^{III}-Derivaten reduzieren, aus diesen wieder oxidativ gewinnen und reduktiv übersichtlich in Alkin-Komplexe des dreiwertigen Rheniums umwandeln lässt.

Durch Behandlung von $(\eta^5-C_5Me_5)ReO_3$ mit Chlortrimethylsilan/Triphenylphosphan in 90% Ausbeute bequem zugänglich, lässt sich 1 nach Schema 1 mit HgCl₂-aktiviertem Aluminiumgriess (Riedel de Haen 11008) bei Raumtemperatur in THF-Suspension selektiv zum zweikernigen Re^{IV}-Komplex 2 reduzieren. Als Reduktionsmittel für diese Umwandlung eignet sich auch Tetraethylstannan [3]. Die in Substanz fassbare Zwischenstufe 2 erfährt unter drastischeren Bedingungen (Schema 1) weitere Reduktion und ergibt dabei das luftstabile Re^{III}-Derivat 3 (Tab. 1). Während die Existenz einer Metall-Metall-Einfachbindung im Re^{IV}-Komplex 2 strukturchemisch gesichert ist *, spricht der für das besser kristallisierende Re^{III}-Derivat $[(\eta^5-C_5Me_4Et)Re(\mu-Cl)Cl]_2$ (3-Et) röntgenstrukturanalytisch ermittelte Bindungsabstand von 250.6(<1) pm für eine Doppelbindung zwischen den beiden Rheniumatomen (Fig. 1). Für den strukturanalytisch nicht charakterisierten formelanalogen d^2 -Nb^{III}-Komplex [$(\eta^5$ -C₅Me₅)NbCl₂]₂ nimmt man ebenfalls eine kurze Metall-Metall-Bindung an [4]. Einen chemischen Konstitutionsbeweis führt die Umsetzung von 3 mit Trimethylphosphan, welche unter redoxneutraler Spaltung der Brückenstruktur den einkernigen Komplex 8 ergibt (Tab. 1). Die zweistufige Reduktion 1 $(d^2-\text{Re}^V) \rightarrow 2$ $(d^3-\text{Re}^{IV}) \rightarrow 3$ $(d^4-\text{Re}^{III})$ ist umkehrbar, wenn der jeweilige Komplex mit Chlor behandelt wird (Schema 1).

Einfach und übersichtlich sind Alkin-Komplexe vom Typ 4 allgemein durch Umsetzung von 1 mit den entsprechenden Alkinen unter reduktiven Bedingungen

^{*} Anmerkung bei der Korrektur (2. 6. 1987). Der Re-Re-Abstand in 2 beträgt 306 pm (W.A. Herrmann, J.K. Felixberger und E. Herdtweck, unveröffentlicht).

Komplex	$IR(cm^{-1})$	¹ H-NMR (ppm) ^{<i>a</i>} (270 MHz, 28 ° C)	¹³ C-NMR (ppm) ^{<i>a</i>} (67.8 MHz, 28°C)
3	315 s ^b 295 m	1.99 (s)	
3-Et ^e	315 s ^b 295 m	199 (s,6H), 1.98 (s,6H) 1.88 (q,2H), 1.22 (t,3H)	
4 ^f	330 s ^b	3.93 (q,4H), 1.96 (s,15H) 1.31(t,6H)	221.11, 106.99 28.73, 13.02 11.73
5 ^g		3.51 (m,4H), 1.79 (s,15H) 1.24 (t,6H), 0.70 (s,3H)	210.50, 99.26 27.32, 13.12 10.44, -15.24
6		3.33 (m,4H), 1.70 (s,15H) 1.16 (t,6H), 0.67(s,6H)	208.28, 95.35 26.24,12.91 10.14, -10.76
7	950 °	2.96 (m,2H), 2.78 (m,2H) 1.80 (s,15H), 1.33 (t,6H)	
7-Et	950 ^c	2.95 (m,2H), 2.76 (m,2H) 2.34 (q,2H), 1.75 (s,6H) 1.74 (s,6H), 1.31 (t,6H) 0.99 (t,3H)	133.98, 103.15 100.26, 98.43 22.65, 20.52 15.95, 15.09
8 ^h	957 s ^d 295 m ^b	1.95 (s,15H), 1.66 (s,18H; ² J(P,H) = 15.4 Hz)	

Tabelle 1 Spektroskopische Charakterisierung der Verbindungen 3-8

^a Alle Substanzen ausser 7 (¹H-NMR in C₆D₆, ¹³C-NMR in CDCl₃) und 8 (Aceton- d_6) wurden in CD₂Cl₂ vermessen. ^b ν (ReCl), KBr-Pressling. ^c ν (ReO), n-Pentan. ^d ν (ReP), KBr-Pressling. ^e Gef. C, 32.35, H, 4.12, Cl, 17.78. C₂₂H₃₄Cl₄Re (812.7) ber.: C, 32.59, H, 4.22, Cl, 17.49%. ^f Gef. C. 40.81, H, 5.53, Cl, 14.52. C₁₆H₂₅Cl₂Re (474.5) ber.: C, 40.50, H, 5.31, Cl, 14.94%. ^g Gef. C, 44.59, H, 6.26, Cl, 7.65. C₁₇H₂₈ClRe (454.1) ber.: C, 44.97, H, 6.22, Cl, 7.81%. ^h Übereinstimmung der spektroskopischen Daten von 8 mit einer auf anderem Weg zugänglichen authentischen Probe (vgl. Ref. 11).

synthetisierbar, wobei sich erneut HgCl₂-aktivierter Aluminiumgriess zur partiellen Enthalogenierung bewährt (Schema 1). Der zwar hydrolyseempfindliche, aber luftbeständige Hexin(3)-Komplex 4 lässt schon jetzt eine präparative Vielfalt dieser Substanzklasse erkennen: Hier gelingt beispielsweise die stufenweise Alkylierung mit Grignard-Reagenzien, mit deren Hilfe nach Schema 1 etwa das chirale Monomethylierungsprodukt 5 bzw. das Dialkylierungsprodukt 6 erreichbar sind (Tab. 1). Ferner lässt sich aus 4 durch alkalische Hydrolyse gezielt das Organorhenium(III)oxid 7 darstellen, welches bisher weniger übersichtlich nur aus dem Re^{VII}-Komplex (η^5 -C₅Me₅)ReO₄ erhältlich war [6].

Wegen seiner präparativen Schlüsselstellung haben wir den Alkin-Komplex 4 strukturchemisch untersucht (Fig. 2).

Die Entfernungen der beiden Acetylen-Kohlenstoffatome zum Rheniumatom sind identisch, indem sie bei 196.1(3)/196.9(3) pm auf erhebliche Mehrfachbindungsanteile hinweisen. Für Rhenium-Carben-Komplexe ermittelte Doppelbindungsabstände liegen bei 192–197 pm [7], während Einfachbindungen stets länger

Fig. 1. Molekülstruktur von *trans*-Bis[(μ -chloro)chloro(η^5 -pentamethylcyclopentadienyl)rhenium](Re=Re) (3) im Kristall (ohne Wasserstoffatome). Die thermischen Schwingungsellipsoide entsprechen 50% Aufenthaltswahrscheinlichkeit. Ausgewählte Bindungslängen (pm) und -winkel (°): Re-Re' 250.6(<1), Re-Cl(1) 240.6(1), Re-Cl(2) 239.7(1), Re-Cl(2') 240.1(1); Re-Cl(2)-Re' 62.98(1). Das Molekül besitzt ein Symmetriezentrum. Eine ausführliche Strukturdiskussion bleibt einer nachfolgenden Publikation vorbehalten [5].

als 215 pm sind [2,8]. Dieser Vergleich legt im Einklang mit der starken Entschirmung der metallständigen Alkin-Kohlenstoffatome (13 C-NMR; Tab. 1) für die Bindungssituation zwischen dem d^4 -Re-Zentrum und dem Alkin-Liganden die

Fig. 2. Molekülstruktur des Hexin(3)-Komplexes 4 im Kristall (ORTEP-Darstellung ohne Wasserstoffatome); thermische Schwingungsellipsoide entsprechen 50% Aufenthaltswahrscheinlichkeit. Ausgewählte Bindungsabstände (pm) und -winkel (°): Re-Cl(1) 244.2(1), Re-Cl(2) 236.6(1), Re-C(3) 196.1(3), Re-C(4) 196.9(3), C(3)-C(4) 132.6(4); Cl(1)-Re-Cl(2) 83.60(3). Eine ausführliche Strukturdiskussion bleibt einer nachfolgenden Publikation vorbehalten [5].

Resonanzbeteiligung einer Dicarben-Struktur am Grundzustand nahe. Auch in den Re^{III}-Komplexen ReCl₃(PMePh₂)(MeC=CMe) (195.7(5) pm, Mittelwert) und [Re(=O)(MeC=CMe)₂(C₅H₅N)][SbF₆] (204.0(5)/206.6(5) pm) findet man sehr kurze Bindungen zwischen den Alkin-Liganden und dem Metallatom [9]. Der CC-Abstand der Alkin-Einheit enspricht mit 132.6(4) pm näherungsweise einer Doppelbindung, ist aber für den Bindungstyp metallkoordinierter Alkine (2e- vs. 4e-Donor) nicht diagnostisch [10].

Mit besonderer Deutlichkeit tritt in der Struktur von 4 der ausgeprägte *trans*-Einfluss zutage, den 4e-Alkin-Liganden offenbar auszuüben vermögen: Die zum Hexin(3)-Liganden *trans*-ständigen Ringkohlenstoffatome sind um 15 pm länger an das Rheniumatom gebunden als die übrigen C-Atome dieses Liganden. Ein derart starker *trans*-Einfluss war in Rhenium-Komplexen dieser Reihe bisher nur bei Oxo-Gruppen beobachtet worden [2,9b].

Ausgewählte Arbeitsvorschriften

(1) $Bis[(\mu-chloro)chloro(\eta^5-pentamethylcyclopentadienyl)rhenium)](Re=Re)$ (3). 460 mg (1.0 mmol) 1 werden in 25 ml THF suspendiert und mit 250 mg Al-Griess sowie mit einer katalytischen Menge HgCl₂ versetzt. Nach 1 h Rühren bei 25°C erwärmt man unter Rückfluss auf 60°C. Binnen 1 h erhält man eine klare rotbraune Lösung über unverbrauchtem Al. Das Filtrat bringt man im Vakuum zur Trockene und extrahiert den Rückstand mit 10 ml CHCl₃. Den Extrakt filtriert man über eine mit SiO₂ (Akt. II/III)/n-Hexan beschickte Fritte (1 5 cm; \emptyset 2 cm) und wäscht mehrmals mit reinem CH₂Cl₂ nach. Das Rohprodukt kristallisiert man aus n-Hexan/CH₂Cl₂ um (5 + 2 Vol.-Teile). Ausb. 150 mg (40%).

(2) Dichloro(η^5 -pentamethylcyclopentadienyl)[η^2 -hexin(3)]rhenium(III) (4). 250 mg (0.5 mmol) 1 werden in einer Mischung aus 3.0 ml THF und 3.0 ml Hexin(3) suspendiert und mit 100 mg Al-Griess sowie mit einer katalytischen Menge HgCl₂ versetzt. Nach 1–2 h Rühren bei 25°C filtriert man die rotbraune Lösung und entfernt die flüchtigen Komponenten im Vakuum. Den Rückstand extrahiert man dreimal mit n-Hexan/CH₂Cl₂ (10 + 1 Vol.-Teile), bringt die vereinigten Extrakte zur Trockne und kristallisiert das Rohprodukt mehrfach aus n-Hexan/CH₂Cl₂ (10 + 1 Vol.-Teile) um. Ausb. 200 mg (85%).

(3) Chloro[η^2 -hexin(3)]methyl(η^5 -pentamethylcyclopentadienyl)rhenium(III) (5). 140 mg (0.3 mmol) 4 werden in 5 ml THF gelöst und bei -78° C tropfenweise zu einer Lösung von 0.3 mmol CH₃MgCl in 10 ml THF gegeben. Man lässt binnen 1 h auf 25°C erwärmen, zieht dann die flüchtigen Bestandteile im Vakuum ab und extrahiert den Rückstand mit n-Hexan/Diethylether (10 + 1 Vol.-Teile). Der Extrakt wird an einer auf -30° C thermostatisierten mit silanisiertem SiO₂/n-Hexan beschickten Säule (l 25 cm, \emptyset 1 cm) chromatographiert. 4 eluiert man als dunkelblaue Zone mit n-Hexan/Diethylether (20 + 1 Vol.-Teile); Nachreinigung durch Umkristallisation aus n-Pentan. Ausb. 60 mg (45%).

(4) $[\eta^2$ -Hexin(3)]dimethyl(η^5 -pentamethylcyclopentadienyl)rhenium(III) (6). 100 mg (0.2 mmol) 4 in 5 ml THF werden bei -78° C tropfenweise zu einer Lösung von

0.4 mmol CH₃MgCl in 10 ml THF gegeben. Man geht dann nach Arbeitsvorschrift (3) vor und erhält nach chromatographischer Aufarbeitung **6** als violettblaues, äusserst luftempfindliches Öl. Ausb. 45 mg (50%).

(5) $[\eta^2$ -Hexin(3)]oxo(η^5 -pentamethylcyclopentadienyl)rhenium(III) (7). 140 mg (0.3 mmol) 4 in 10 ml THF werden mit 200 mg festem KOH sowie mit 0.1 ml H₂O versetzt. Nach 1–2 h Rühren bei Raumtemperatur filtriert man die braune Lösung und entfernt die flüchtigen Komponenten im Vakuum. Der Rückstand wird mit 10 ml n-Pentan extrahiert. Den Extrakt chromatographiert man an silanisiertem SiO₂/n-Hexan (*l* 20 cm, 1 cm). Auf der Säule eluiert 7 als rote Zone mit n-Hexan/CHCl₃ (10 + 1 Vol.-Teile). Ausb. 53 mg (40%).

Dank. Diese Arbeit erfuhr grosszügige Unterstützung durch die HOECHST AG, den Fonds der Chemischen Industrie sowie das Bundesministerium für Forschung und Technologie.

Literatur

- 1 J. Okuda, E. Herdtweck und W.A. Herrmann, J. Am. Chem. Soc., im Druck.
- 2 Zusammenfassungen: (a) W.A. Herrmann und J. Okuda, J. Mol. Catal., im Druck; (b) W.A. Herrmann, E. Herdtweck, M. Flöel, J. Kulpe, U. Küsthardt und J. Okuda, Polyhedron, im Druck.
- 3 W.A. Herrmann, J.K. Felixberger, E. Herdtweck, A. Schäfer und J. Okuda, Angew. Chem., 99 (1987) 466; Angew. Chem. Int. Ed. Engl., im Druck.
- 4 P.A. Belmonte, F.G.N. Cloke, K.H. Theopold und R.R. Schrock, Inorg. Chem., 23 (1984) 2365.
- 5 E. Herdtweck, R.A. Fischer und W.A. Herrmann, Publikation in Vorbereitung.
- 6 E.J.M. deBoer, J.D. With und A.G. Orpen, J. Am. Chem. Soc., 108 (1986) 8271.
- 7 F.R. Kreissl und P. Friedrich, Angew. Chem., 89 (1977) 553; Angew. Chem. Int. Ed. Engl., 16 (1977) 543.
- 8 E.O. Fischer, T.L. Lindner, H. Fischer, G. Huttner, P. Friedrich und F.R. Kreissl, Z. Naturforsch. B, 32 (1977) 648.
- 9 (a) F.W.B. Einstein, K.G. Tyers und D. Sutton, Organometallics, 4 (1985) 489; (b) J.M. Mayer, T.H. Tulip, J.C. Calabrese und E. Valencia, J. Am. Chem. Soc., 109 (1987) 157.
- 10 F.R. Kreissl, W.J. Sieber, P. Hofmann, J. Riede und M. Wolfgruber, Organometallics, 4 (1985) 788 und die dort zitierte Literatur.
- 11 W.A. Herrmann, E. Voss, U. Küsthardt und E. Herdtweck, J. Organomet. Chem., 294 (1985) C37.